generate-mlperf-inference-submission
Automatically generated README for this automation recipe: generate-mlperf-inference-submission
Category: MLPerf benchmark support
License: Apache 2.0
-
Notes from the authors, contributors and users: README-extra
-
CM meta description for this script: _cm.json
- Output cached? False
Reuse this script in your project
Install MLCommons CM automation meta-framework
Pull CM repository with this automation recipe (CM script)
cm pull repo mlcommons@cm4mlops
Print CM help from the command line
cmr "generate submission mlperf mlperf-inference inference mlcommons inference-submission mlperf-inference-submission mlcommons-inference-submission" --help
Run this script
Run this script via CLI
cm run script --tags=generate,submission,mlperf,mlperf-inference,inference,mlcommons,inference-submission,mlperf-inference-submission,mlcommons-inference-submission [--input_flags]
Run this script via CLI (alternative)
cmr "generate submission mlperf mlperf-inference inference mlcommons inference-submission mlperf-inference-submission mlcommons-inference-submission " [--input_flags]
Run this script from Python
import cmind
r = cmind.access({'action':'run'
'automation':'script',
'tags':'generate,submission,mlperf,mlperf-inference,inference,mlcommons,inference-submission,mlperf-inference-submission,mlcommons-inference-submission'
'out':'con',
...
(other input keys for this script)
...
})
if r['return']>0:
print (r['error'])
Run this script via Docker (beta)
cm docker script "generate submission mlperf mlperf-inference inference mlcommons inference-submission mlperf-inference-submission mlcommons-inference-submission" [--input_flags]
Script flags mapped to environment
--analyzer_settings_file=value
→CM_MLPERF_POWER_ANALYZER_SETTINGS_FILE_PATH=value
--category=value
→CM_MLPERF_SUBMISSION_CATEGORY=value
--clean=value
→CM_MLPERF_CLEAN_SUBMISSION_DIR=value
--dashboard=value
→CM_MLPERF_DASHBOARD=value
--dashboard_wb_project=value
→CM_MLPERF_DASHBOARD_WANDB_PROJECT=value
--device=value
→CM_MLPERF_DEVICE=value
--division=value
→CM_MLPERF_SUBMISSION_DIVISION=value
--duplicate=value
→CM_MLPERF_DUPLICATE_SCENARIO_RESULTS=value
--hw_name=value
→CM_HW_NAME=value
--hw_notes_extra=value
→CM_MLPERF_SUT_HW_NOTES_EXTRA=value
--infer_scenario_results=value
→CM_MLPERF_DUPLICATE_SCENARIO_RESULTS=value
--power_settings_file=value
→CM_MLPERF_POWER_SETTINGS_FILE_PATH=value
--preprocess=value
→CM_RUN_MLPERF_SUBMISSION_PREPROCESSOR=value
--preprocess_submission=value
→CM_RUN_MLPERF_SUBMISSION_PREPROCESSOR=value
--results_dir=value
→CM_MLPERF_INFERENCE_RESULTS_DIR_=value
--run_checker=value
→CM_RUN_SUBMISSION_CHECKER=value
--run_style=value
→CM_MLPERF_RUN_STYLE=value
--skip_truncation=value
→CM_SKIP_TRUNCATE_ACCURACY=value
--submission_dir=value
→CM_MLPERF_INFERENCE_SUBMISSION_DIR=value
--submitter=value
→CM_MLPERF_SUBMITTER=value
--sw_notes_extra=value
→CM_MLPERF_SUT_SW_NOTES_EXTRA=value
--tar=value
→CM_TAR_SUBMISSION_DIR=value
Default environment
These keys can be updated via --env.KEY=VALUE
or env
dictionary in @input.json
or using script flags.
- CM_RUN_MLPERF_ACCURACY:
on
- CM_MLPERF_RUN_STYLE:
valid
Script output
cmr "generate submission mlperf mlperf-inference inference mlcommons inference-submission mlperf-inference-submission mlcommons-inference-submission " [--input_flags] -j