Skip to content

generate-mlperf-inference-user-conf

Automatically generated README for this automation recipe: generate-mlperf-inference-user-conf

Category: MLPerf benchmark support

License: Apache 2.0

Developers: Arjun Suresh, Thomas Zhu, Grigori Fursin

  • CM meta description for this script: _cm.yaml
  • Output cached? False

Reuse this script in your project

Install MLCommons CM automation meta-framework

Pull CM repository with this automation recipe (CM script)

cm pull repo mlcommons@cm4mlops

cmr "generate mlperf inference user-conf inference-user-conf" --help

Run this script

Run this script via CLI
cm run script --tags=generate,mlperf,inference,user-conf,inference-user-conf [--input_flags]
Run this script via CLI (alternative)
cmr "generate mlperf inference user-conf inference-user-conf " [--input_flags]
Run this script from Python
import cmind

r = cmind.access({'action':'run'
              'automation':'script',
              'tags':'generate,mlperf,inference,user-conf,inference-user-conf'
              'out':'con',
              ...
              (other input keys for this script)
              ...
             })

if r['return']>0:
    print (r['error'])
Run this script via Docker (beta)
cm docker script "generate mlperf inference user-conf inference-user-conf" [--input_flags]

Script flags mapped to environment

  • --count=valueCM_MLPERF_LOADGEN_QUERY_COUNT=value
  • --hw_name=valueCM_HW_NAME=value
  • --mode=valueCM_MLPERF_LOADGEN_MODE=value
  • --multistream_target_latency=valueCM_MLPERF_LOADGEN_MULTISTREAM_TARGET_LATENCY=value
  • --num_threads=valueCM_NUM_THREADS=value
  • --offline_target_qps=valueCM_MLPERF_LOADGEN_OFFLINE_TARGET_QPS=value
  • --output_dir=valueOUTPUT_BASE_DIR=value
  • --performance_sample_count=valueCM_MLPERF_PERFORMANCE_SAMPLE_COUNT=value
  • --power=valueCM_MLPERF_POWER=value
  • --regenerate_files=valueCM_REGENERATE_MEASURE_FILES=value
  • --rerun=valueCM_RERUN=value
  • --scenario=valueCM_MLPERF_LOADGEN_SCENARIO=value
  • --server_target_qps=valueCM_MLPERF_LOADGEN_SERVER_TARGET_QPS=value
  • --singlestream_target_latency=valueCM_MLPERF_LOADGEN_SINGLESTREAM_TARGET_LATENCY=value
  • --target_latency=valueCM_MLPERF_LOADGEN_TARGET_LATENCY=value
  • --target_qps=valueCM_MLPERF_LOADGEN_TARGET_QPS=value
  • --test_query_count=valueCM_TEST_QUERY_COUNT=value

Default environment

These keys can be updated via --env.KEY=VALUE or env dictionary in @input.json or using script flags.

  • CM_MLPERF_LOADGEN_MODE: accuracy
  • CM_MLPERF_LOADGEN_SCENARIO: Offline
  • CM_OUTPUT_FOLDER_NAME: test_results
  • CM_MLPERF_RUN_STYLE: test
  • CM_TEST_QUERY_COUNT: 10
  • CM_FAST_FACTOR: 5
  • CM_MLPERF_QUANTIZATION: False

Script output

cmr "generate mlperf inference user-conf inference-user-conf " [--input_flags] -j