Skip to content

process-mlperf-accuracy

Automatically generated README for this automation recipe: process-mlperf-accuracy

Category: MLPerf benchmark support

License: Apache 2.0

  • CM meta description for this script: _cm.json
  • Output cached? False

Reuse this script in your project

Install MLCommons CM automation meta-framework

Pull CM repository with this automation recipe (CM script)

cm pull repo mlcommons@cm4mlops

cmr "run mlperf mlcommons accuracy mlc process process-accuracy" --help

Run this script

Run this script via CLI
cm run script --tags=run,mlperf,mlcommons,accuracy,mlc,process,process-accuracy[,variations] [--input_flags]
Run this script via CLI (alternative)
cmr "run mlperf mlcommons accuracy mlc process process-accuracy [variations]" [--input_flags]
Run this script from Python
import cmind

r = cmind.access({'action':'run'
              'automation':'script',
              'tags':'run,mlperf,mlcommons,accuracy,mlc,process,process-accuracy'
              'out':'con',
              ...
              (other input keys for this script)
              ...
             })

if r['return']>0:
    print (r['error'])
Run this script via Docker (beta)
cm docker script "run mlperf mlcommons accuracy mlc process process-accuracy[variations]" [--input_flags]

Variations

  • Group "coco-evaluation-tool"

    Click here to expand this section.

    • _default-pycocotools (default)
    • _nvidia-pycocotools
  • Group "dataset"

    Click here to expand this section.

    • _cnndm
      • ENV variables:
        • CM_DATASET: cnndm
    • _coco2014
      • ENV variables:
        • CM_DATASET: coco2014
    • _imagenet (default)
      • ENV variables:
        • CM_DATASET: imagenet
    • _kits19
      • ENV variables:
        • CM_DATASET: kits19
    • _librispeech
      • ENV variables:
        • CM_DATASET: librispeech
    • _open-orca
      • ENV variables:
        • CM_DATASET: openorca
    • _openimages
      • ENV variables:
        • CM_DATASET: openimages
    • _squad
      • ENV variables:
        • CM_DATASET: squad
    • _terabyte
      • ENV variables:
        • CM_DATASET: squad
  • Group "precision"

    Click here to expand this section.

    • _float16
      • ENV variables:
        • CM_ACCURACY_DTYPE: float16
    • _float32 (default)
      • ENV variables:
        • CM_ACCURACY_DTYPE: float32
    • _float64
      • ENV variables:
        • CM_ACCURACY_DTYPE: float64
    • _int16
      • ENV variables:
        • CM_ACCURACY_DTYPE: int16
    • _int32
      • ENV variables:
        • CM_ACCURACY_DTYPE: int32
    • _int64
      • ENV variables:
        • CM_ACCURACY_DTYPE: int64
    • _int8
      • ENV variables:
        • CM_ACCURACY_DTYPE: int8
Default variations

_default-pycocotools,_float32,_imagenet

Script flags mapped to environment

  • --result_dir=valueCM_MLPERF_ACCURACY_RESULTS_DIR=value

Native script being run


Script output

cmr "run mlperf mlcommons accuracy mlc process process-accuracy [variations]" [--input_flags] -j