process-mlperf-accuracy
Automatically generated README for this automation recipe: process-mlperf-accuracy
Category: MLPerf benchmark support
License: Apache 2.0
- CM meta description for this script: _cm.json
- Output cached? False
Reuse this script in your project
Install MLCommons CM automation meta-framework
Pull CM repository with this automation recipe (CM script)
cm pull repo mlcommons@cm4mlops
Print CM help from the command line
cmr "run mlperf mlcommons accuracy mlc process process-accuracy" --help
Run this script
Run this script via CLI
cm run script --tags=run,mlperf,mlcommons,accuracy,mlc,process,process-accuracy[,variations] [--input_flags]
Run this script via CLI (alternative)
cmr "run mlperf mlcommons accuracy mlc process process-accuracy [variations]" [--input_flags]
Run this script from Python
import cmind
r = cmind.access({'action':'run'
'automation':'script',
'tags':'run,mlperf,mlcommons,accuracy,mlc,process,process-accuracy'
'out':'con',
...
(other input keys for this script)
...
})
if r['return']>0:
print (r['error'])
Run this script via Docker (beta)
cm docker script "run mlperf mlcommons accuracy mlc process process-accuracy[variations]" [--input_flags]
Variations
-
Group "coco-evaluation-tool"
Click here to expand this section.
_default-pycocotools
(default)_nvidia-pycocotools
-
Group "dataset"
Click here to expand this section.
_cnndm
- ENV variables:
- CM_DATASET:
cnndm
- CM_DATASET:
- ENV variables:
_coco2014
- ENV variables:
- CM_DATASET:
coco2014
- CM_DATASET:
- ENV variables:
_imagenet
(default)- ENV variables:
- CM_DATASET:
imagenet
- CM_DATASET:
- ENV variables:
_kits19
- ENV variables:
- CM_DATASET:
kits19
- CM_DATASET:
- ENV variables:
_librispeech
- ENV variables:
- CM_DATASET:
librispeech
- CM_DATASET:
- ENV variables:
_open-orca
- ENV variables:
- CM_DATASET:
openorca
- CM_DATASET:
- ENV variables:
_openimages
- ENV variables:
- CM_DATASET:
openimages
- CM_DATASET:
- ENV variables:
_squad
- ENV variables:
- CM_DATASET:
squad
- CM_DATASET:
- ENV variables:
_terabyte
- ENV variables:
- CM_DATASET:
squad
- CM_DATASET:
- ENV variables:
-
Group "precision"
Click here to expand this section.
_float16
- ENV variables:
- CM_ACCURACY_DTYPE:
float16
- CM_ACCURACY_DTYPE:
- ENV variables:
_float32
(default)- ENV variables:
- CM_ACCURACY_DTYPE:
float32
- CM_ACCURACY_DTYPE:
- ENV variables:
_float64
- ENV variables:
- CM_ACCURACY_DTYPE:
float64
- CM_ACCURACY_DTYPE:
- ENV variables:
_int16
- ENV variables:
- CM_ACCURACY_DTYPE:
int16
- CM_ACCURACY_DTYPE:
- ENV variables:
_int32
- ENV variables:
- CM_ACCURACY_DTYPE:
int32
- CM_ACCURACY_DTYPE:
- ENV variables:
_int64
- ENV variables:
- CM_ACCURACY_DTYPE:
int64
- CM_ACCURACY_DTYPE:
- ENV variables:
_int8
- ENV variables:
- CM_ACCURACY_DTYPE:
int8
- CM_ACCURACY_DTYPE:
- ENV variables:
Default variations
_default-pycocotools,_float32,_imagenet
Script flags mapped to environment
--result_dir=value
→CM_MLPERF_ACCURACY_RESULTS_DIR=value
Native script being run
Script output
cmr "run mlperf mlcommons accuracy mlc process process-accuracy [variations]" [--input_flags] -j