app-mlperf-inference-dummy
Automatically generated README for this automation recipe: app-mlperf-inference-dummy
Category: Modular MLPerf benchmarks
License: Apache 2.0
- CM meta description for this script: _cm.yaml
- Output cached? False
Reuse this script in your project
Install MLCommons CM automation meta-framework
Pull CM repository with this automation recipe (CM script)
cm pull repo mlcommons@cm4mlops
Print CM help from the command line
cmr "reproduce mlcommons mlperf inference harness dummy-harness dummy" --help
Run this script
Run this script via CLI
cm run script --tags=reproduce,mlcommons,mlperf,inference,harness,dummy-harness,dummy[,variations] [--input_flags]
Run this script via CLI (alternative)
cmr "reproduce mlcommons mlperf inference harness dummy-harness dummy [variations]" [--input_flags]
Run this script from Python
import cmind
r = cmind.access({'action':'run'
'automation':'script',
'tags':'reproduce,mlcommons,mlperf,inference,harness,dummy-harness,dummy'
'out':'con',
...
(other input keys for this script)
...
})
if r['return']>0:
print (r['error'])
Run this script via Docker (beta)
cm docker script "reproduce mlcommons mlperf inference harness dummy-harness dummy[variations]" [--input_flags]
Variations
-
Group "backend"
Click here to expand this section.
_pytorch
(default)- ENV variables:
- CM_MLPERF_BACKEND:
pytorch
- CM_MLPERF_BACKEND:
- ENV variables:
-
Group "batch-size"
Click here to expand this section.
_bs.#
-
Group "device"
Click here to expand this section.
_cpu
(default)- ENV variables:
- CM_MLPERF_DEVICE:
cpu
- CM_MLPERF_DEVICE:
- ENV variables:
_cuda
- ENV variables:
- CM_MLPERF_DEVICE:
gpu
- CM_MLPERF_DEVICE_LIB_NAMESPEC:
cudart
- CM_MLPERF_DEVICE:
- ENV variables:
-
Group "loadgen-scenario"
Click here to expand this section.
_multistream
- ENV variables:
- CM_MLPERF_LOADGEN_SCENARIO:
MultiStream
- CM_MLPERF_LOADGEN_SCENARIO:
- ENV variables:
_offline
- ENV variables:
- CM_MLPERF_LOADGEN_SCENARIO:
Offline
- CM_MLPERF_LOADGEN_SCENARIO:
- ENV variables:
_server
- ENV variables:
- CM_MLPERF_LOADGEN_SCENARIO:
Server
- CM_MLPERF_LOADGEN_SCENARIO:
- ENV variables:
_singlestream
- ENV variables:
- CM_MLPERF_LOADGEN_SCENARIO:
SingleStream
- CM_MLPERF_LOADGEN_SCENARIO:
- ENV variables:
-
Group "model"
Click here to expand this section.
_bert-99
- ENV variables:
- CM_MODEL:
bert-99
- CM_SQUAD_ACCURACY_DTYPE:
float32
- CM_MODEL:
- ENV variables:
_bert-99.9
- ENV variables:
- CM_MODEL:
bert-99.9
- CM_MODEL:
- ENV variables:
_gptj-99
- ENV variables:
- CM_MODEL:
gptj-99
- CM_SQUAD_ACCURACY_DTYPE:
float32
- CM_MODEL:
- ENV variables:
_gptj-99.9
- ENV variables:
- CM_MODEL:
gptj-99.9
- CM_MODEL:
- ENV variables:
_llama2-70b-99
- ENV variables:
- CM_MODEL:
llama2-70b-99
- CM_MODEL:
- ENV variables:
_llama2-70b-99.9
- ENV variables:
- CM_MODEL:
llama2-70b-99.9
- CM_MODEL:
- ENV variables:
_resnet50
(default)- ENV variables:
- CM_MODEL:
resnet50
- CM_MODEL:
- ENV variables:
_retinanet
- ENV variables:
- CM_MODEL:
retinanet
- CM_MODEL:
- ENV variables:
-
Group "precision"
Click here to expand this section.
_fp16
_fp32
_uint8
Default variations
_cpu,_pytorch,_resnet50
Script flags mapped to environment
--count=value
→CM_MLPERF_LOADGEN_QUERY_COUNT=value
--max_batchsize=value
→CM_MLPERF_LOADGEN_MAX_BATCHSIZE=value
--mlperf_conf=value
→CM_MLPERF_CONF=value
--mode=value
→CM_MLPERF_LOADGEN_MODE=value
--multistream_target_latency=value
→CM_MLPERF_LOADGEN_MULTISTREAM_TARGET_LATENCY=value
--offline_target_qps=value
→CM_MLPERF_LOADGEN_OFFLINE_TARGET_QPS=value
--output_dir=value
→CM_MLPERF_OUTPUT_DIR=value
--performance_sample_count=value
→CM_MLPERF_LOADGEN_PERFORMANCE_SAMPLE_COUNT=value
--rerun=value
→CM_RERUN=value
--results_repo=value
→CM_MLPERF_INFERENCE_RESULTS_REPO=value
--scenario=value
→CM_MLPERF_LOADGEN_SCENARIO=value
--server_target_qps=value
→CM_MLPERF_LOADGEN_SERVER_TARGET_QPS=value
--singlestream_target_latency=value
→CM_MLPERF_LOADGEN_SINGLESTREAM_TARGET_LATENCY=value
--skip_preprocess=value
→CM_SKIP_PREPROCESS_DATASET=value
--skip_preprocessing=value
→CM_SKIP_PREPROCESS_DATASET=value
--target_latency=value
→CM_MLPERF_LOADGEN_TARGET_LATENCY=value
--target_qps=value
→CM_MLPERF_LOADGEN_TARGET_QPS=value
--user_conf=value
→CM_MLPERF_USER_CONF=value
Default environment
These keys can be updated via --env.KEY=VALUE
or env
dictionary in @input.json
or using script flags.
- CM_MLPERF_LOADGEN_SCENARIO:
Offline
- CM_MLPERF_LOADGEN_MODE:
performance
- CM_SKIP_PREPROCESS_DATASET:
no
- CM_SKIP_MODEL_DOWNLOAD:
no
- CM_MLPERF_SUT_NAME_IMPLEMENTATION_PREFIX:
dummy_harness
- CM_MLPERF_SKIP_RUN:
no
Native script being run
No run file exists for Windows
Script output
cmr "reproduce mlcommons mlperf inference harness dummy-harness dummy [variations]" [--input_flags] -j